
Value Driven Landmarks for Oversubscription Planning

Daniel Muller and Erez Karpas
Technion - Israel Institute of Technology

Haifa, Israel

Abstract

Oversubscription planning is the problem of choosing an ac-
tion sequence which reaches a state with a high utility, given a
budget for total action cost. Most previous work on oversub-
scription planning was restricted to only non-negative utility
functions and 0-binary utility functions. While this restriction
allows using techniques similar to partial satisfaction plan-
ning, it limits the expressivity of the formalism. In this paper,
we address oversubscription planning with general additive
utility functions over a finite-domain representation. We in-
troduce the notions of net utility of an action, and of a gross
positive action. Using these notions, we prove several prop-
erties about the structure of an optimal plan, which are then
compiled into a classical planning problem. The landmarks of
this classical planning problem are value driven landmarks of
the original oversubscription problem, that is, they must occur
in any action sequence which improves utility. An empirical
evaluation demonstrates that these landmarks are more infor-
mative than previous state-of-the-art methods for landmark
discovery for oversubscription planning, and lead to better
planning performance.

Introduction
Oversubscription planning (Smith 2004), hereinafter re-
ferred to as OSP, deals with achieving a state with a high
utility value, given a budget on total action cost. This formu-
lation allows us to handle situations with under-constrained
resources, which do not allow us to achieve all possible goal
facts. This is in contrast to classical planning, in which the
objective is to find a cheap plan which achieves all goal
facts. In optimal OSP and optimal classical planning, the
tasks are further constrained to finding a path which achieves
a state with maximal utility, and, to finding the cheapest cost
path which achieves the goal, respectively.

Over the years, the theory and practice of classical plan-
ning have been studied and advanced much more intensively
compared to OSP. Recent work (Mirkis and Domshlak 2013;
2014; Domshlak and Mirkis 2015) made several contribu-
tions aiming at improving the scalability of OSP solvers.
In particular, they developed a planner which exploits stan-
dard landmark discovery tools of classical planning, as well
as abstractions for solving OSP problems. In this paper, we

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

propose a technique which allows us to discover more in-
formative landmarks than previous methods. Furthermore,
our technique is applicable for general additive utility OSP
tasks. More specifically, we introduce the notion of the net
utility of an action, which is the net change in utility after
applying this action. We prove that any optimal plan must
end with an action which has positive net utility. We also in-
troduce the notion of a gross positive action, which improves
the utility for at least one of the state variables, although pos-
sibly at the cost of a lower utility for other variables. We then
combine these and prove that any optimal plan must contain
a gross positive action (which might have negative net util-
ity), which achieves some fact that is maintained until the
end of the plan, which must be an action with positive net
utility. This approach of improving differs from previous ap-
proaches which attempted to collect valuable facts and allow
us to handle general additive utility functions, rather than
only non-negative utilities.

To leverage these properties, we introduce a compilation
of an OSP task to classical planning, which forces a plan to
conform to these properties. The landmarks of this classi-
cal planning task constitute value driven landmarks (called
ε-landmarks by Domshlak and Mirkis (2015)), that is, land-
marks which must occur in every plan that improves over the
utility of the initial state. We also introduce a slight modifi-
cation to the inc-compile-and-BFBB planner (Domshlak and
Mirkis 2015), which leverages our definitions of net posi-
tive action and gross positive actions and our observations
on these definitions. An empirical evaluation shows that the
landmarks we discover are more informative than those of
Domshlak and Mirkis (2015), and that our modified planner
outperforms state-of-the-art OSP planners.

Preliminaries
Some auxiliary notation first. For k ∈ N+, by [k] we denote
the set {1, 2, . . . , k}. An assignment of a variable v to value
d is denoted by 〈v/d〉 and referred as a proposition or fact.
For a partial assignment p to V , let V(p) ⊆ V denote the
subset of variables instantiated by p, and, for v ∈ V(p), p[v]
denote the value provided by p to the variable v.

Planning Framework. In what follows we adopt the
OSP model representation of Domshlak and Mirkis (2015),
adopting a language close to the SAS+ language for classical



planning (Bäckström and Klein 1991; Bäckström and Nebel
1995). A deterministic oversubscription planning (OSP)
task is given by a sextuple Π = 〈V, s0, u;O, c, b〉, where
V = {v1, . . . , vn} is a finite set of finite-domain state vari-
ables, with each complete assignment to V representing a
state, and S = dom(v1) × · · · × dom(vn) being the state
space of the task; s0 ∈ S is a designated initial state; u is
an efficiently computable state utility function u : S → R;
O is a finite set of actions, with each action o ∈ O be-
ing represented by a pair 〈pre(o), eff(o)〉 of partial assign-
ments to V , called preconditions and effects of o, respec-
tively; c : O → R0+ is an action cost function; b ∈ R0+ is
a cost budget allowed for the task. Action o is applicable in
a state s if s[v] = pre(o)[v] for all v ∈ V(pre(o)). Applying
o changes the value of each v ∈ V(eff(o)) to eff(o)[v], and
the resulting state is denoted by sJoK. Sequential application
of actions 〈o1, . . . , om〉 denoted by π, called a plan for s
if it is applicable in s and c(π) ≤ b. We assume a general
additive utility function with multi-valued variables, defined
as u(s) =

∑
〈v/d〉∈s uv(d), with uv(d) ∈ R for all variable-

value pairs 〈v/d〉. That is, negative utility values are allowed
and each variable can get many value assignment with dif-
ferent utility available for each variable-value pair.

A deterministic classical planning task, is given by Π =
〈V, s0, G;O, c〉, where the utility function and cost budget
are replaced with a hard goal constraint which is a partial
assignment on state variables G ⊆ V .

Disjunctive Action Landmarks. Fact landmark are
propositions that must be true at some point in every so-
lution plan for a given planning task (Hoffmann, Porte-
ous, and Sebastia 2004). Similarly to landmarks over facts,
disjunctive action landmarks (Vidal and Geffner 2006;
Zhu and Givan 2004), correspond to a set of actions such
that every plan contains at least one action from that
set. While landmarks are widely used in (both satisfic-
ing and optimal) classical planning (Karpas and Domshlak
2009; Helmert and Domshlak 2009; Coles and Coles 2011;
Domshlak, Katz, and Lefler 2012; Bonet and Helmert 2010;
Pommerening and Helmert 2013), the first framework for
their exploitation in the context of OSP has been introduced
by Domshlak and Mirkis (2015) only recently. This frame-
work basic construct is the notion of ε-landmarks.

An ε-landmark for a state s is a set of actions that is
applied in every plan π that achieves something valuable,
that is, by every plan having a positive value. For instance,
with the disjunctive action landmarks we use here, if L ⊆ O
is an ε-landmark for s, then every plan having a positive
value end-state contains an action from L.
ε-landmarks can be used to construct a budget reduction

compilation (Domshlak and Mirkis 2015), as follows:
• Given an OSP task Π, we generate the ε-compilation Πε

of Π, where Πε is a classical planning task that simply
extends the structure of Π with a set of zero-cost actions
such that applying any of them corresponds to verifying
that a positive value can be achieved in Π.

• Using classical planning tools, a set of landmarks L is
generated for Πε, along with an admissible landmark cost
function lcost : L → R0+ where

∑
L∈L lcost(L) ≤

h∗(s) (Katz and Domshlak 2010; Karpas and Domshlak
2009; Helmert and Domshlak 2009).

• Performing budget reducing compilation by compiling
(L, lcost) into Π, obtaining an OSP task ΠL, where ΠL
extends the structure of Π by mirroring the actions of
each ε-landmark Li with their “cheaper by lcost(Li)”
versions. To compensate for the discounted actions, bud-
get b is reduced by

∑n
i=1 lcost(Li). Domshlak and

Mirkis (2015) devised two versions of polynomial and
sound budget reducing compilation; A basic compilation
ΠL applied on a pairwise disjoint landmarks and extended
with auxiliary control structure, a generalized budget re-
ducing compilation applied on an arbitrary (non-disjoint)
sets of ε-landmarks. This compilation can then be used
within a heuristic search algorithm, as described next.

Heuristic Search for OSP. Best-First-Branch-and-Bound
(BFBB) for OSP must rely on admissible utility-upper-
bounding heuristic function (within budget b restrictions)
h : S × R0+ → R0+ to estimate the true utility h∗(s, b).
BFBB maintains a queue in decreasing order of

h(s〈n〉, b− g(n)) and the best solution n∗ found so far. All
generated nodes n evaluated no higher than u(n∗) and nodes
with cost-so-far g(n) higher than the problem’s budget b are
pruned. When the node-list becomes empty, or the node se-
lected from the list promises less than the lower bound, the
plan associated with the best solution n∗ is returned. If the
heuristic h is admissible, then the returned plan is guaran-
teed to be optimal.

inc-compile-and-BFBB (Domshlak and Mirkis 2015) is
an incremental version of BFBB. Additionally to the best
solution so far n∗, inc-compile-and-BFBB maintains a set
of reference states Sref, which is updated with any new, best-
do-far state which has reached n∗. For each si ∈ Sref and
each valuable fact g ∈ V \ si a zero cost action is added
to O which indicates for a valuable fact that is not in si.
Applying all these zero cost actions verifies an achievement
of subset of good facts that included in no state from Sref.
With each update of Sref, BFBB is restarted with a new set
of ε-landmarks created on the basis of the current Sref, that
is derived concerning achieving something that has not yet
been seen so far. These new, more informed ε-landmarks are
compiled back into the original task for next iteration.

The Properties of Optimal Plans
In this section, we present several properties of the struc-
ture of optimal plans. In the following section, we present
a full compilation and a solver exploiting these properties.
We will refer to a state that improves over the utility of the
initial state as a valuable state, and to a sequence of actions
reaching such state as a valuable plan.

The Utility of Actions
Considering negative utility values in OSP, because of the
dependencies between propositions, it is possible that col-
lecting positive utility values might require collecting neg-
ative utility values on the way. In particular, it is possi-
ble that the same action achieving positive value proposi-
tions also achieves some negative value propositions. For



an OSP action o, the total outcome utility uout(o) =∑
v∈V(eff(o)) uv(eff(o)[v]), capture these inter-state vari-

ables dependencies in a wider context.
Negative interactions are not only confined to problems

with variables of negative utility. Even when variables take
a non-negative form, an action achieving valuable proposi-
tions might lose more valuable propositions that have been
held at the origin state. The net utility of an action definition
provides a wider context of achievement evaluation, by tak-
ing in account both target state and its origin, and captures
the intra-state dependencies, in addition to the inter-state de-
pendencies (which captured with the total outcome utility).
For clarity of presentation, we present the net utility of an ac-
tion in SAS representation, under the assumption that for ev-
ery effect variable a precondition is defined, so the notation
is well defined. Later, we relax our simplifying assumption
with the selective action split. The net utility of an action o
is defined as follows:
Definition 1. For an OSP planning task action o, the
net utility of o is u(o) =

∑
v∈V(eff(o))[u(eff(o)[v]) −

u(pre(o)[v])].

The definition of net utility will help us to derive more in-
formative ε-landmarks, and further reduce the search space.

High Level Overview
In what follows, we present an interrelated set of proper-
ties of optimal plans, which allow us to define a pattern
of valuable plans in OSP tasks. Our landmark generation
method exploits these optimal plan properties on the level
of actions and sequences of actions, in contrast to the tra-
ditional “collecting” approach which generates landmarks
to valuable facts, which based on properties of the effect
list of a single action. These properties are used to gen-
erate refined and lengthier landmarks which are the input
for Mirkis and Domshlak budget reduction procedure and
improve the pruning mechanism which is based on these
landmarks. A running example in Figure 1 shows all plans
for a given OSP task and will be referred to demonstrate
these properties. In this OSP task an additive utility function
is defined over three state variables with the same domain
dom = {A,B,C,D}, by u(A) = 0, u(B) = 1, u(C) = 2
and u(D) = 3 for each variable.

In Lemma 1, we prove that any valuable plan terminates
with a net positive utility action. The colored in blue arrows
illustrated in Figure 1(b) indicate such net positive utility ac-
tion candidates to finish the search with an optimal state in
hand. The green colored actions depicted in Figure 1(c) are
gross positive actions, whose effects improve over at least
one of the variables in the initial state, and may have to-
tal negative utility by achieving worse utility for some other
variables. We prove in Lemma 2 that such actions must oc-
cur in any optimal plan, prior to a net positive action appli-
cation which terminates the search.

A special case is an action that is both gross positive and
has positive net utility, for example, action o10 in Figure
1(d). In a strictly positive utility setting with an 0-binary
utility function and an initial state with utility zero, the net
positive actions are also gross positive. However, in general

o6

o5

o17

o3o3

CCC

o2 o8

o4

o1

o3

o7

o11

o9

o17

o16

o18

o13

o15o12

o14

DBA

CDB

o6

BDC

u=6 u=7

u=3

u=4 u=6 u=6 u=6

u=4 u=4 u=7u=4u=5

u=1

CDB

DAB

CCC BCB

BCC

CBB

DAA

BBC

ACC

o10
BCB

u=3

o5 o20

DBC

DBA

o19

o21

BDB

u=5

u=4

o23

CAB

DAA

o22

o24

BBB

u=4

u=3

u=9u=4u=4 u=8 u=7u=4 u=6 u=3

BBB

(a)

o7

o12
DBA

CDBBDC

u=6 u=7

u=3

u=4 u=6 u=6 u=6

u=4 u=4 u=7u=4u=5

u=1

BCB

BCC

CBB

DAA

BBC

ACC

o10
BCB

u=3

DBC

DBA

BDB

u=5

u=4

CAB

DAA

BBB

u=4

u=3

u=9u=4u=4 u=8 u=7u=4 u=6 u=3

BBB

(c)

DCC

o18

DDC

o14

DBA

CDB

o6

BDC

u=6 u=7

u=3

u=4 u=6 u=6 u=6

u=4 u=4 u=7u=4u=5

u=1

CDB

DAB

CCC

CBB

DAA

BBC

ACC

o10
BCB

u=3

o5

DBC

DBA

BDB

u=5

u=4

CAB

DAA

BBB

u=4

u=3

u=9u=4u=4 u=8 u=7u=4 u=6 u=3

BBB

(b)

o7

DCC

o18

DDC

o14

DBA

CDB

o6

BDC

u=6 u=7

u=3

u=4 u=6 u=6 u=6

u=4 u=4 u=7u=4u=5

u=1

BCB

BCC

CBB

DAA

BBC
o10

u=3

o5

DBC

DBA

BDB

u=5

u=4

CAB

DAA

BBB

u=4

u=3

u=9u=4u=4 u=8 u=7u=4 u=6 u=3

BBB

BCB

o12
ACC

(d)

o2 o8

o4

o1

o3

o7

o11

o9

o17

o16

o15o12

o20

o19

o21

o23

o22

o24

o2

o4

o1

o7

o11

o9

o17

o16

o18

o13

o15

o14 o20

o19

o21

o23

o22

o24

o2

o4

o1

o7

o11

o9

o16o13

o20

o19

o21

o23

o22

o24o15

o13

CCC

o3

DDD

DCC

DCC

DDC

CDC

DDD

DCC

DCC

DDC

CDC

DCC

CDC

DDD

BCB

BCC

CDB

DDD

DAB

DCC

CDCCDB

DAB

Figure 1: An example of an OSP task, with (a) illustrating
a search space with valuable states depicted in green. The
grayed out zone in (b) shows the pruning from Lemma 1
with net positive actions depicted with thick blue arrows.
The region pruned by exploiting gross positive actions
(Lemma 2) is grayed out in (c). Finally (d) shows the region
that is pruned by combining both of the above.

additive utility settings, these actions are likely to be dis-
tinct. For example, the net positive utility actions o5 and o6
in our running example lead to states with lower utility com-
pared to the initial state. A maintained achievement prop-
erty, which we prove in Lemma 3 complements Lemma 2
and ensures that an achieved effect of a gross positive action
remains in hand when net positive actions are examined as
candidates to terminate the search.

Finally, in Theorem 4, we combine all these claims and
define a so-called ’window of opportunity’ to terminate a
plan with a valuable state in hand, as illustrated in Fig-
ure 1(d). We construct a classical planning task, which en-
codes the above mentioned constraints on the ’window of
opportunity’. The landmarks for this classical planning task,
are value landmarks which guide us towards a valuable state
in the original OSP task.

Net Positive Actions
At first glance, the net utility value of an action does not
have a clear role in our reasoning; It is very much possible
that optimal plans will contain many actions with negative
net utility since it allows for achieving valuable facts that



outbalance the respective loss. However, Lemma 1 shows
that actions with positive net value do play a characteristic
role in optimal plans. The proof of Lemma 1 is rather simple
and, in plain words, the lemma states that, for each plan π,
there is a plan π′ that; (i) ends with a positive net utility
action, (ii) is at most as costly as π, and (iii) is at least as
valuable as π.
Lemma 1. Given an OSP task Π with a general addi-
tive utility function u, for any plan π for Π such that
u(sJπK) > u(s0), there is a prefix π′ of π such that:
1. u(s0JπK) ≤ u(s0Jπ′K), and 2. for the last action olast
along π′, we have u(olast) > 0.

Proof. The proof is by induction on the plan length n. For
n = 1, we have π = 〈o1〉, and since u(sJπK) > u(s0), the
operator o1 has a positive net utility value. Hence, π′ = π
satisfies the claims. Assuming that the claim holds for n ≥
1, we now prove it for n+ 1.

Considering a plan π = 〈o1, . . . , on+1〉, for i ∈ [n+1], let
πi denote the prefix of π consisting of its first i operators. If
the last operator on+1 along π has a positive net utility value,
then we are done with π′ = π. Otherwise, if on+1 has either
negative or zero net utility value, then u(sJπK) > u(s0) in
particular implies u(sJπnK) > u(s0). If π′ is a prefix of πn
that satisfies the lemma by our assumption of induction, then
π′ also satisfies the lemma with respect to π since u(π′) ≥
u(sJπnK) ≥ u(sJπK).

Relying on Lemma 1,we can now extract ε-landmarks
which focus on actions with net positive utility value as can-
didates to end the search process. Specifically, we can devise
a polynomial time compilation to classical planning, that ex-
tends the structure of Π with a goal variable g, and for any
net positive action o, the effects are extended with the propo-
sition 〈g/1〉. Applying any of those actions indicates a pos-
itive value improvement in Π. With this compilation we can
use any method for classical planning landmark extraction
to derive more informative ε-landmarks for Π, due to a re-
finement of goal-achieving actions.

Gross Positive Actions
Considering tasks with a valuable initial state s0, a net posi-
tive utility action might be applied during the search, leading
to a valuable state s with lower utility u(s) < u(s0). Since
landmarks hold for any valuable plan, they must hold for a
plan reaching state s.

We are no longer interested in a search of plans that
“achieve something”, but in search for plans that achieve an
improvement over the initial state s0.
Definition 2. Given an OSP task Π = 〈V, s0, u;O, c, b〉
and a state s, let improved(s) be the set of all propositions
〈v/d〉 ∈ D such that uv(d) > uv(s[v]).

Based on the definition of improved(s) we define a gross
positive action, which achieves an improvement over at least
one variable from the initial state.
Definition 3. Given an OSP task Π = 〈V, s0, u;O, c, b〉
and a state s, the gross positive actions relative
to s OgPos(s) ⊆ O of Π are OgPos(s) =
{o ∈ O, eff(o) ∩ improved(s) 6= ∅}.

For now, we will use the initial state s0 as the reference
state to improve over. Lemma 2 is based on the definition
of the gross positive actions and shows that gross positive
actions play a characteristic role in optimal plans. The proof
of Lemma 2, in plain words, claims that, along any valuable
plan π for an OSP task Π that improves over the given state,
there is at least one gross positive action, which improves
the utility for at least one of the state variables (although
possibly at the cost of a lower utility for other variables).

Lemma 2. Given an OSP task Π = 〈V, s0, u;O, c, b〉, and
a state s, for any plan π that improves over s, that is,
u(s0JπK) > u(s), it holds that: 1. s0JπK∩ improved(s) 6= ∅,
and 2. π ∩ OgPos(s) 6= ∅, that is, at least one action along
π is gross positive.

Proof. Assuming to the contrary that s0JπK∩improved(s) =
∅, by definition of improved(s) we have uv(sJπK[v]) ≤
uv(s[v]), and thus

∑
〈v/d〉∈sJπK uv(d) ≤

∑
〈v/d〉∈s0 uv(d)

and, in turn, u(sJπK) ≤ u(s), contradicting the assumption
of the lemma that π improves over s.

Since sJπK ∩ improved(s) 6= ∅, consider any proposition
〈v/d〉 ∈ sJπK ∩ improved(s). By definition of improved(s),
〈v/d〉 6∈ s, π must contain an operator o achieving 〈v/d〉,
and by definition of OgPos(s), o ∈ OgPos(s).

Applying any of those actions indicates a valuable
achievement in Π. As illustrated in Figure 1(c) in our run-
ning example, the number of the landmarks derived with
focus on gross positive utility actions can be substantially
increased.

The Window of Opportunity to Improve
In tasks with an initial state carrying the lowest possible util-
ity, always, all the constraints are satisfied by the last net
positive action application, which makes Lemma 1 a suffi-
cient condition. When it comes to tasks with an initial state
utility u(s0) greater than the lowest possible, this set of sep-
arate events is likely to happen. When the gross positive ac-
tion and the net positive action are different events, achieve-
ments may be lost between the occurrences of both of them.

Furthermore, Lemma 1 is stated concerning the net util-
ity of an action, which is a relative term. The decision if
the net utility of an action is enough to improve the initial
state, depends on which state the action is applied in. When
the initial state is the lowest possible, obviously, every net
positive utility action is a good indicator for improvement.
On the other hand, gross positive actions are defined in ab-
solute terms, and allow for evaluation of achievements in
relation to a reference state, in the context of a sequence of
actions rather than a single action. The integration of those
two properties to criteria for optimal plans with any initial
utility state is through timing. The occurrence of a gross pos-
itive action establishes a dynamic reference point. Once a
reference point is established, a net positive utility improve-
ment must occur in relation to that point. The length of the
’window of opportunity’ to achieve an improvement over the
initial state is defined by the time that the achievement of
the gross positive action keeps holding, that is, an improved
proposition (or a set of propositions) over the initial state



from improved(s0) holds. When there is no achievement yet,
or the achievement is not maintained, the net positive utility
actions (which are not gross positive) do not bring a sustain-
able (global) benefit. To acquire more accurate landmarks,
we have to capture the information about the occurrence of
an effective gross-positive achievement, which allows for
recognition of the ’zone’ in which an effective search can
terminate. A net positive action that is applied out of that
’zone’ can be safely treated as just an intermediate action
along with a plan.

Maintained Achievements. In Lemma 3 we define the
maintained proposition property of sequential application of
actions in a deterministic scenario. This notation is simi-
lar to the maintenance goals notation, which is used in the
context of temporal planing (Haddawy and Hanks 1993;
1998). The proof of Lemma 3 is rather simple, it finalizes the
claim in Lemma 2 by defining the ’goal area’ where the plan
may terminate with achievement in hand. In plain words,
Lemma 3 states that for each improving plan π over the ini-
tial state there is a suffix plan π′ such that (i) starts with
a gross positive action ogrs, and (ii) a valuable proposition
achieved by ogrs is maintained along π

′
.

Lemma 3. Given an OSP task Π = 〈V, s0, u;O, c, b〉,
and a state s, for any plan π that improves over s, that
is, u(s0JπK) > u(s), there is a suffix π′ of π = π0 · π′
such that: 1. π′ starts with a gross positive action ogrs, and
2. for some 〈v/d〉 ∈ eff(ogrs)∩ improved(s), 〈v/d〉 is main-
tained along π′, that is, for each non-empty prefix π′′ of π′,
〈v/d〉 ∈ s0Jπ0KJπ′′K.

Proof. Let π = 〈o1, . . . , on〉 be a plan for Π such
that u(s0JπK) > u(s). By Lemma 2, we have s0JπK ∩
improved(s) 6= ∅, and for each 〈v/d〉 ∈ s0JπK ∩
improved(s), the plan π contains an operator achieving
〈v/d〉. Consider any such proposition 〈v/d〉 ∈ s0JπK ∩
improved(s), and let oi, i ∈ [n], be the last instance of an
operator along π that achieves 〈v/d〉. Since 〈v/d〉 ∈ s0JπK,
then no operator instance along the suffix π′ = 〈oi, . . . , on〉
of π changes the value of v, and thus π′ satisfies the claim
of the lemma.

Synergistic Criteria for a Valuable Plan. Given an OSP
task Π with a general additive utility function and an initial
state s0, considering a plan π for Π with u(s0JπK) > u(s0),
from Lemma 1, Lemma 2 and Lemma 3 we know the fol-
lowing properties for a valuable plan π: (1): for the last ac-
tion o along π, we have u(o) > 0, (2): π contains at least
one gross positive action, and (3): an achievement of at least
one gross positive action is maintained, that is, holds along a
suffix of π. Putting it all together, we are now able to devise
additional constraints on valuable plans for OSP tasks. Any
valuable plan π has a valuable partial plan.

Consider a plan π = 〈o1, . . . , oi, . . . on〉, with i ∈ [n]
where oi is a gross positive action, that achieves a valuable
proposition 〈v/d〉 ∈ improved(s0), yet with total state util-
ity u(s0J〈o1, . . . , oi〉K) < u(s0). Obviously, the sequence
of actions 〈oi+1, . . . , on〉 must include a net positive action.
In this case the rest of the plan π′ = 〈oi, . . . on〉 is ded-
icated to damage reduction over the variables from V \ v

that obtained on the way to collect the valuable proposi-
tion 〈v/d〉 ∈ improved(s0). In this case, there is an or-
dering constraint over the occurrence of applying a gross
positive action and net positive action, where oi must oc-
cur at some point before applying the net positive action
on. Furthermore, along the execution of the partial plan
π′ = 〈oi, . . . on〉 the proposition 〈v/d〉 must be maintained
by any action oj , where j ∈ [i, n].

The maintained proposition property proved in Lemma 3
allows us to combine into Theorem 4, through an order-
ing constraint, the properties provided in Lemma 1 and
Lemma 2. Theorem 4 states that, for each valuable plan π,
there is a partial valuable plan π

′′
, which is “window of op-

portunity” to terminate the search with an optimal end- state.

Theorem 4. Given an OSP task Π with an additive utility
function u, and a state s with u(s) ≥ u(s0), for any plan π
for Π with u(s0JπK) > u(s), there is a suffix π′ of π, such
that:

1. The last action ol of π′ is a net positive action, and
2. The first action of of π′ is a gross positive action relative

to s, i.e., of ∈ ogrs(s), and
3. There exists some effect 〈v/d〉 of of , which is maintained

throughout π′.

Proof. The proof is immediate from the combination of
Lemmas 1, 2, and 3.

Relying on Theorem 4, we can define a more informa-
tive version of the compilation. Specifically, the compilation
is extended with an auxiliary control structure of zero cost
actions and zero utility propositions that restrict plans to ter-
minate in the “window of opportunity” for improvement.

Multiple Action Repetitions. Many OSP domains allow
for repetition of an action during a plan. In particular, an
optimal plan π for an OSP task Π may involve multiple oc-
currences of net positive actions and gross positive actions.
Considering an optimal plan π = 〈o1, . . . , oi, . . . on〉, with
k ∈ [n], Lemma 2 shows that a plan π that achieves an im-
provement over the initial state s0 has to contain at least
one gross positive action. The valuable proposition that is
achieved with this gross positive action holds at the end-state
of π. This necessary condition for optimal planning is bene-
ficial for plans with no repeated actions. When multiple ac-
tion repetition occurs, this condition is weaker and can lead
to false recognition of sub plans as valuable plans.

Consider a plan π = 〈o1, . . . , oi, . . . , oj , . . . on〉, with
i, j ∈ [n], such that i < j ≤ n and a valuable propo-
sition 〈v/d〉 ∈ eff(oi), such that 〈v/d〉 ∈ improved(s0),
let the end-state be s = s0JπK such that u(s) > u(s0).
Suppose that, an action oj such that 〈v/d〉 ∈ pre(oj)
and {〈v′′/d′′〉 , 〈v/d〉} ∈ eff(oj), where d 6= d′, v 6= v′

and 〈v′′/d′′〉 ∈ pre(on). In this example, the proposition
〈v/d〉 ∈ improved(s0) is achieved by an intermediate action
oi to satisfy a precondition of action oj and lost immedi-
ately after, i.e. not maintained. Obviously, the proposition
〈v/d〉 ∈ s ∩ improved(s0) must be re-acquired again, and
the plan may include another occurrence of this action, that
is, π = 〈o1, . . . , oi, . . . , oj , . . . oi, . . . on〉 so that 〈v/d〉 will



hold at the end-state, that is, 〈v/d〉 ∈ s∩ improved(s0) ⊆ s.
Hence, multiple occurrence of gross positive action oj in
the action sequence π = 〈oi, . . . , oj , . . . oi〉, may miss land-
marks for this sequence.

To acquire more accurate landmarks we have to capture
this information in the compiled classical planning task Πε.
We allow for multiple action repetition by duplicating gross
positive actions and extending each with an auxiliary con-
trol indicator ggrs as follows; The action onm is associated
with a proposition 〈v/d〉 that is not-maintained, and con-
structed as pre(onm) = pre(o) ∪ 〈ggrs/0〉, eff(onm) =
eff(o), c(onm) = c(o). The action om is associated with
a maintained proposition 〈v/d〉, onm can be applied only
once along plan π and constructed as pre(om) = pre(o) ∪
〈ggrs/0〉, eff(om) = eff(o)∪ 〈ggrs/1〉, c(om) = c(o). Since
o is split to onm and om, it may occur in different landmarks.

The Valuable Plan Compilation
Relying on Theorem 4, In what follows, we focus on the
value driven landmarks for an OSP task Π.
Definition 4. Let Π = 〈V, s0, u;O, c, b〉 be an OSP task
and improved(s)(with s0 at the start) be the set of all
propositions 〈v/d〉 ∈ D such that uv(d) > uv(s[v]). The
valuable plan compilation of Π is a classical planning task
Π↑ = 〈V↑, s0↑, G↑;O↑, c↑〉 constructed as V↑ = V ∪E ∪Y
where E = {srch, get, ver, end, ggrs, gnet, g} with
dom = {1, 0} and, Y = {yvd | v ∈ V, d ∈
dom(v)}, s0↑ = s0 ∪ {〈yvd/0〉 | yvd ∈ Y } ∪
{〈srch/1〉 , 〈get/0〉 , 〈ggrs/0〉 , 〈gnet/0〉 , 〈end/0〉 , 〈g/0〉},
G↑ = {〈g/1〉}, and O↑ constructed of sets of actions as
follows:
• {og | o ∈ O, u(o) > 0, eff(o) ∩ improved(s) 6= ∅} where

og =

〈
pre(o) ∪ 〈ggrs/0〉 ∪ 〈gnet/0〉 ,

eff(o) ∪ 〈ggrs/1〉 ∪ 〈gnet/1〉 , c(o)

〉
• {omid | o ∈ O, u(o) > 0} where
omid = 〈pre(o) ∪ 〈srch/1〉 , eff(o), c(o)〉

•
{
o+ | o ∈ O, u(o) > 0, eff(o) ∩ improved(s) = ∅

}
where

o+ =

〈
pre(o) ∪ 〈end/1〉 ∪ 〈gnet/0〉 ,

eff(o) ∪ 〈end/0〉 ∪ 〈gnet/1〉 , c(o)

〉
• {onm, om | o ∈ O, u(o) ≤ 0, eff(o) ∩ improved(s) 6= ∅} where;
onm = 〈pre(o) ∪ 〈ggrs/0〉 , eff(o), c(o)〉, and
om = 〈pre(o) ∪ 〈ggrs/0〉 , eff(o) ∪ 〈ggrs/1〉 , c(o)〉

• {osrc | o ∈ O, u(o) ≤ 0, eff(o) ∩ improved(s) = ∅} where
osrc = 〈pre(o) ∪ 〈srch/1〉 , eff(o), c(o)〉

• finishg =

〈 〈srch/1〉 ∪ 〈ggrs/1〉 ,
〈get/1〉 ∪ 〈srch/0〉 , c(finish) = 0

〉

finishGg =

〈 〈srch/1〉 ∪ 〈ggrs/1〉 ∪ 〈gnet/1〉 ,

〈get/1〉 ∪ 〈srch/0〉 , c(finishG) = 0

〉
• {ogrsver, o

net
ver | 〈v/d〉 ∈ improved(s)} where

ogrsver =

〈 〈v/d〉 ∪ 〈get/1〉 ∪ 〈gnet/0〉 ∪ 〈end/0〉 ∪
〈
y
v
d/0

〉
,

〈end/1〉 ∪ 〈get/0〉 ∪
〈
y
v
d/1

〉
, c(o

grs
ver) = 0

〉

onet
ver =

〈 〈v/d〉 ∪ 〈
y
v
d/1

〉
∪ 〈gnet/1〉 ,

〈gnet/0〉 ∪
〈
y
v
d/0

〉
∪ 〈g/1〉 , c(onet

ver) = 0

〉
In plain words, Π↑ extends the structure of Π with a zero

cost auxiliary actions and a zero utility auxiliary proposi-
tions. This auxiliary control structure allows for transforma-
tion of an OSP task to a certain classical planning task, that

reflects the original OSP task properties in a way that they
will be considered by the classical planning landmarks gen-
eration procedure. A valuable state for an OSP task Π with
an initial state s0 can be acquired with a set of events. Striv-
ing to extract refined landmarks of good quality, it will be
beneficial to provide the landmark extraction procedure with
as much as possible information about the events and the
constraints that must hold in any valuable plan for an OSP
task, that is, as accurate as possible auxiliary control struc-
ture. The auxiliary control structure constructed as follows:
• the propositions srch, get, end, ggrs, gnet and g together

with the actions ogrsver, o
net
ver and finish enforce the

achievements with respect to constraints from Theorem 4,
• the goal proposition g can be achieved directly by a net

positive utility action, which is also gross positive action,
• the artificial goal proposition g can be achieved by a net

positive utility action, which is not a gross positive ac-
tion, only after the verification phase is terminated, that is,
the actions Ogrsver , O

net
ver and finish applied. The verifica-

tion phase is as follows: 1. regular actions can be applied
only before finish action, 2. Ogrsver actions can be applied
only after finish action, 3. last occurrence of net utility
actions (with gnet verification) can be applied only after
Ogrsver action, 4. goal achieving actions can be applied only
with onetver ∈ Onetver action.

With this auxiliary control structure, the first part of any plan
for Π↑ determines a plan for Π, the second part “verifies”
that the end-state of that plan achieves a subset of valuable
propositions from improved(s0), the third part terminates
the search with a net positive utility action. Finally, the last
part grantees that improved(s)∩s0JπK 6= ∅ by verifying that
the valuable proposition that initiated the verification phase,
have not been lost during verification phase.

Constructing Π↑ from Π is trivially polynomial time, it
allows for effective discovery of value driven landmark for
Π using the standard machinery for landmark discovery.
Theorem 5. For any OSP task Π, any landmark L for Π↑
such that L ⊆ O is a value-landmark L for Π.

With Theorem 51 in hand, we can derive ε-landmarks for
Π using classical planning landmark extraction methods.

Incorporating the Compilation into the Planner. Based
on the compilation described above, we modified the
inc-compile-and-BFBB (Domshlak and Mirkis 2015) plan-
ner in two ways. First, we used the landmarks extracted
from our compilation rather than the original compilation
(Domshlak and Mirkis 2015). Second, instead of maintain-
ing the set of good facts, we modify our landmark extraction
technique to refer only to the best solution found so far, n∗.
Specifically, gross positive actions in the second iteration
and onward refer to an improvement relative to n∗, rather
than to the initial state s0.

Selective Action Split
In a SAS+ action, a variable could have an effect defined on
it without having a precondition. This makes computing the

1Due to space limitations, relegated to a full technical report.



net utility of the action impossible, as the net utility depends
on the state where the action is applied. In what follows we
release our simplifying assumption of actions being repre-
sented in SAS.

Let us denote by Sa the set of states in which action a is
applicable, and by S+

a the set of states in which a is appli-
cable and has positive net utility. Since a is represented in
SAS+, Sa is a Cartesian product of all possible propositions
of the variables for which a has no preconditions, with a’s
preconditions. Let us also denote the set of variables which
appear in a’s effects but not in its preconditions by Va. We
could create multiple copies of a, one for each possible as-
signment to Va, and compute for each of these whether it has
positive net utility or not.

However, since we are only interested in checking
whether the net utility is positive or not, we can potentially
reduce the number of copies of a needed. Conceptually,
we can think of a propositional formula expressed in DNF
over the propositions associated with Va, whose satisfying
assignments are exactly those in which a has positive net
utility, and another DNF formula whose satisfying assign-
ments are those where a has non-positive net utility. Then it
is enough to create a copy of a for each clause in these two
DNF formulas, which guarantees that each copy always has
either positive or non-positive net utility. Our implementa-
tion exploits mutual exclusion relations and cases where the
utility of a variable is constant, to reduce the set of possible
assignments even further, but we omit the exact details for
the sake of brevity.

Empirical Evaluation
As OSP still lacks a standard suite of benchmarks for com-
parative evaluation, we have cast in this role the STRIPS
classical planning tasks from the International Planning
Competitions (IPC) 1998-2006. This “translation” to OSP
was done by associating a separate value with each proposi-
tion in the corresponding classical IPC task.

In order to transform a classical planning task Π into a set
of OSP tasks, we first solve Π optimally using Fast Down-
ward (Helmert 2006) using the admissible landmarks heuris-
tics (Karpas and Domshlak 2009) with a timeout of 10 min-
utes. Let us denote the cost of an optimal solution to Π by c∗.
Similarly to (Domshlak and Mirkis 2015) we then generate
several different OSP tasks, with budgets corresponding to
25%, 50%, 75%, and 100% of c∗. To complete the process,
we must then assign a utility to each proposition in Π. We
used 2 different methods of assigning utilities:

non-negative Each proposition 〈v/d〉 of multi-valued vari-
able v ∈ V was assigned a utility as follows:

u(〈v/d〉) =


2 if 〈v/d〉 is a goal proposition in Π

1 if v is a goal variable in Π

but 〈v/d〉 is not a goal proposition
0 otherwise

negative Let s be the state reached by an optimal solution

of Π. Then

u(〈v/d〉) =


1 if 〈v/d〉 is a goal proposition in Π

−1 if 〈v/d〉 ∈ s but
〈v/d〉 is not a goal proposition

0 otherwise

Non-negative Utility For the non-negative utility as-
signment method, we compared our approach, referred
to as the improving approach here, to the collecting ap-
proach (Domshlak and Mirkis 2015). In both cases we ran
inc-compile-and-BFBB with the blind heuristic, using our
modified version of it for the improving approach.

We begin by comparing the informativeness of the land-
marks of our improving approach, relative to that of the land-
marks of the collecting approach. Figures 2a-2d compare the
number of expanded nodes for each problem using collect-
ing and improving approaches. As these figures show, the
number of nodes expanded by the improving approach was
always lower than the number of nodes expanded by the col-
lecting approach. A closer look shows that as the budget de-
creases, our approach becomes more effective.

Table 1 shows the total number of problems solved by
each approach for each budget. These results show the im-
proving approach is able to solve more problems. Further-
more, in some cases, it is able to prove that there is no way
to improve upon the initial state with the given budget —
this happens when the total cost of the value-landmarks dis-
covered exceeds the budget. In this case, there is no need to
perform search; the total number of problems for each do-
main where this occurs is in parentheses. Additionally, the
table shows the total planning time for the set of commonly
solved problems in each domain, where again the improving
approach is faster on average.

Negative Utility For this utility assignment method, we
could not compare to the collecting approach, since it is
restricted to non-negative utilities. Thus, we only evalu-
ated the improving approach using our modified version of
inc-compile-and-BFBB.

Table 2 shows the results of the improving approach on
these problems. While we have nothing to compare the re-
sults with, our planner does manage to optimally solve all
but 1 of the tasks, and manages to solve quite a few of them
with no search.

Conclusion and Future Work
We have addressed OSP with general additive utility func-
tions. By defining the notions of net utility of an action, and
of a gross positive action, we were able to exploit observa-
tions about the structure of optimal plans to derive value-
landmarks. These landmarks can then be used in an OSP
planner to obtain state-of-the-art performance.

These notions are not restricted to OSP planning. For
example, the notion of the net utility of an action can be
adapted to classical planning, where an action has net pos-
itive utility if it achieves some goal facts without deleting
any other goal facts. We believe exploiting this observation
in the context of classical planning can be beneficial.



100 101 102 103 104 105 106 107

collecting approach

100

101

102

103

104

105

106

107

im
p
ro

v
in

g
 a

p
p
ro

a
ch

100%

100 101 102 103 104 105 106 107

collecting approach

100

101

102

103

104

105

106

107

im
p
ro

v
in

g
 a

p
p
ro

a
ch

75%

100 101 102 103 104 105 106

collecting approach

100

101

102

103

104

105

106

im
p
ro

v
in

g
 a

p
p
ro

a
ch

50%

100 101 102 103 104

collecting approach

100

101

102

103

104

im
p
ro

v
in

g
 a

p
p
ro

a
ch

25%

airport

blocks

depot

freecell

grid

gripper

logistics00

logistics98

miconic

mystery

pipesworld-nt

pipesworld-t

psr-small

rovers

satellite

tpp

trucks

zenotravel

Figure 2: Comparative view of the number of expanded nodes for the fact oriented collecting approach (x-axis) vs. the action
oriented improving approach (y-axis) on tasks with different budgets relative to c∗.

25% 50% 75% 100%
Improving Collecting Improving Collecting Improving Collecting Improving Collecting

Solved Time Solved Time Solved Time Solved Time Solved Time Solved Time Solved Time Solved Time
airport (17) 17(16) 44.85 17(1) 97.31 17(6) 230.08 17(0) 256.95 17(6) 248.97 17(0) 352.57 17(0) 365.72 17(0) 443.78
blocks (18) 18(3) 22.57 18(0) 24.85 18(0) 77.14 18(0) 79.90 18(0) 276.62 18(0) 343.41 18(0) 441.72 16(0) 704.34
depot (4) 4(2) 7.66 4(0) 8.17 4(0) 24.94 4(0) 28.00 4(0) 96.15 4(0) 181.27 4(0) 159.82 3(0) 543.53
freecell (11) 11(0) 457.54 11(0) 354.74 11(0) 500.99 11(0) 386.16 11(0) 1500.16 11(0) 1431.01 11(0) 2143.73 11(0) 1855.77
grid (2) 2(2) 9.58 2(2) 9.42 2(1) 20.78 2(1) 20.44 2(0) 39.67 2(0) 121.06 2(0) 317.75 2(0) 276.03
gripper (4) 4(1) 8.35 4(0) 5.96 4(0) 31.16 4(0) 21.79 4(0) 32.55 4(0) 21.75 4(0) 62.37 4(0) 46.68
logistics00 (13) 13(2) 15.49 13(0) 20.33 13(0) 103.77 12(0) 189.02 13(0) 751.91 11(0) 1087.28 13(0) 611.25 11(0) 594.93
logistics98 (3) 3(1) 2.97 3(0) 5.68 3(0) 6.58 3(0) 8.22 3(0) 518.47 3(0) 534.32 3(0) 544.24 3(0) 587.24
miconic (47) 47(15) 69.34 47(15) 58.60 47(6) 383.90 46(6) 361.32 45(1) 1852.12 45(1) 1710.02 44(0) 789.38 40(0) 963.90
mystery (11) 11(11) 50.79 11(4) 33.41 11(7) 83.40 11(0) 58.45 11(3) 95.92 11(0) 65.25 11(0) 128.36 11(0) 264.23
pipesw-nt (13) 13(2) 101.74 13(2) 89.53 12(0) 155.44 12(0) 144.90 12(0) 348.74 12(0) 362.17 12(0) 973.61 12(0) 1180.86
pipesw-t (6) 6(1) 52.67 6(0) 34.13 6(0) 102.64 6(0) 71.82 6(0) 115.44 6(0) 80.39 6(0) 182.70 6(0) 143.03
psr-small (47) 47(10) 63.38 47(1) 60.62 47(0) 131.15 47(0) 126.70 47(0) 111.84 47(0) 107.23 47(0) 364.56 47(0) 384.18
rovers (7) 7(1) 10.52 7(1) 10.20 7(0) 46.09 7(0) 61.44 7(0) 816.88 7(0) 1295.53 7(0) 938.01 6(0) 918.55
satellite (6) 6(2) 7.13 6(2) 7.80 6(0) 36.57 5(0) 63.94 5(0) 23.64 4(0) 22.60 4(0) 81.71 4(0) 101.32
tpp (6) 6(5) 3.26 6(5) 3.56 7(1) 20.30 7(1) 23.12 6(1) 151.68 6(1) 310.71 6(0) 458.78 6(0) 445.09
trucks (2) 2(1) 4.76 2(1) 3.88 2(0) 14.26 2(0) 12.78 2(0) 23.04 2(0) 20.09 2(0) 41.12 2(0) 34.52
zenotravel (8) 8(4) 8.31 8(1) 10.79 8(1) 28.68 8(1) 32.29 8(1) 36.13 8(1) 194.32 8(0) 206.90 8(0) 575.28
total (225) 225(79) 940.91 225(35) 838.98 224(22) 1997.87 221(9) 1947.24 221(12) 7039.93 218(3) 8240.98 219(0) 8811.73 209(0) 10063.26

Table 1: Number of problems solved and (in brackets) solved with no search at all, across the different budgets using the
improving approach and the collecting approach.

25% 50% 75% 100%
Expanded Solved Time Expanded Solved Time Expanded Solved Time Expanded Solved Time

airport (15) 0 15(15) 47.76 44599 15(6) 74.02 151860 15(6) 149.11 203372 15(0) 69.38
blocks (17) 405 17(4) 21.17 24379 17(1) 32.09 1945724 17(1) 144.81 14218611 17(1) 706.26
depot (3) 25 3(2) 11.42 16928 3(1) 17.38 382154 3(0) 43.46 13900 2(0) 8.88
freecell (5) 48 5(1) 77.51 2463 5(0) 122.81 14644 5(0) 132.95 24733 5(0) 141.51
grid (2) 0 2(2) 35.49 2021 2(1) 36.76 1142555 2(0) 111.88 1409996 2(0) 399.31
gripper (3) 821 3(1) 3.27 10258 3(0) 6.84 34214 3(0) 10.25 60207 3(0) 14.25
logistics00 10) 1043 10(2) 14.41 54470 10(0) 22.84 479866 10(0) 40.51 1854165 10(0) 108.12
logistics98 (2) 9 2(1) 1.97 10957 2(0) 3.98 94961 2(0) 8.23 327929 2(0) 21.95
miconic (40) 12746 40(15) 44.23 639797 40(6) 134.43 4748596 40(1) 425.22 11337706 40(0) 933.18
mystery (11) 0 11(11) 49.48 160 11(10) 51.71 12516 11(5) 67.39 395511 11(0) 121.13
pipesw-nt 11) 250 11(2) 48.19 21490 11(0) 99.09 290079 11(0) 178.4 2248028 11(0) 677.66
pipesw-t (5) 71 5(1) 45.68 6386 5(0) 71.05 95533 5(0) 88.71 356736 5(0) 115.91
rovers (4) 15 4(1) 2.6 7563 4(0) 5.58 2637 4(0) 5.18 10181 4(0) 7.21
satellite (4) 30 4(2) 4.53 13949 4(0) 9.97 187176 4(0) 24.52 1013108 4(0) 104.54
tpp (5) 0 5(5) 2.61 1932 5(1) 3.54 14455 5(1) 3.35 28278 5(0) 4.49
trucks (2) 730 2(1) 2.92 21946 2(0) 6 77382 2(0) 9.62 82969 2(0) 10.88
zenotravel (7) 34 7(4) 11.94 10594 7(1) 19.94 229144 7(1) 30.14 1477266 7(1) 85.49
total (146) 16227 146(70) 425.18 882892 146(27) 718.03 9903496 146(15) 1473.72 35062696 145(2) 3630.15

Table 2: Performance of the utility setting independent OSP solver across the different budgets, on domains with negative
utility setting, in terms of expanded nodes. The number of problems that were solved with no search is in brackets.



References
Bäckström, C., and Klein, I. 1991. Planning in polyno-
mial time: the sas-pubs class. Computational Intelligence
7(3):181–197.
Bäckström, C., and Nebel, B. 1995. Complexity results for
sas+ planning. Computational Intelligence 11(4):625–655.
Bonet, B., and Helmert, M. 2010. Strengthening landmark
heuristics via hitting sets. In ECAI, 329–334.
Coles, A. J., and Coles, A. 2011. Lprpg-p: Relaxed plan
heuristics for planning with preferences. In ICAPS.
Domshlak, C., and Mirkis, V. 2015. Deterministic over-
subscription planning as heuristic search: Abstractions and
reformulations. Journal of Artificial Intelligence Research
52:97–169.
Domshlak, C.; Katz, M.; and Lefler, S. 2012. Landmark-
enhanced abstraction heuristics. Artificial Intelligence
189:48–68.
Haddawy, P., and Hanks, S. 1993. Utility models for goal-
directed decision-theoretic planners. University of Wash-
ington, Department if Computer Science and Engineering.
Haddawy, P., and Hanks, S. 1998. Utility models for goal-
directed, decision-theoretic planners. Computational Intel-
ligence 14(3):392–429.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: what’s the difference anyway? In
ICAPS, 162–169.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning. Journal of Artificial Intelligence Re-
search 22:215–278.
Karpas, E., and Domshlak, C. 2009. Cost-optimal planning
with landmarks. In IJCAI, 1728–1733.
Katz, M., and Domshlak, C. 2010. Optimal admissible
composition of abstraction heuristics. Artificial Intelligence
174(12-13):767–798.
Mirkis, V., and Domshlak, C. 2013. Abstractions for over-
subscription planning. In ICAPS.
Mirkis, V., and Domshlak, C. 2014. Landmarks in oversub-
scription planning. In Proceedings of the Twenty-first Eu-
ropean Conference on Artificial Intelligence, 633–638. IOS
Press.
Pommerening, F., and Helmert, M. 2013. Incremental lm-
cut. In ICAPS.
Smith, D. E. 2004. Choosing objectives in over-subscription
planning. In ICAPS, volume 4, 393.
Vidal, V., and Geffner, H. 2006. Branching and pruning: An
optimal temporal pocl planner based on constraint program-
ming. Artificial Intelligence 170(3):298–335.
Zhu, L., and Givan, R. 2004. Heuristic planning via roadmap
deduction. IPC-4 Booklet 64–66.


